Notizie generiche

Simulando una kilonova in 3D

La fusione di due stelle di neutroni è uno degli avvenimenti più affascinanti del cosmo. La sequenza di eventi che porta alla coalescenza è questa: prima i due densi relitti stellari si avvicinano; poi iniziano a ruotare uno intorno all’altro in una sorta di balletto cosmico; infine si fondono. Il colossale scontro tra titani che ne consegue porta all’espulsione di grandi quantità di materia con le condizioni appropriate per produrre elementi chimici con nuclei instabili, il cui decadimento radioattivo libera l’energia che alimenta una gigantesca esplosione che gli astronomi chiamano kilonova. Attraverso sofisticate simulazioni magneto-idrodinamico in 3D, un team di ricercatori ha ora modellato per la prima volta questa sequenza di eventi, compresa l’emissione di luce associata al botto finale.

Il risultato della simulazione, spiegano i ricercatori, è un modello tridimensionale che, se osservato quasi perpendicolarmente al piano orbitale delle due stelle di neutroni, ha caratteristiche molto simili a quelle osservate nella kilonova At2017gfo, un’esplosione avvenuta a 140 milioni di anni luce di distanza da noi, alla periferia della galassia Ngc 4993. Probabilmente ve ne ricorderete perché la fusione delle due stelle di neutroni che l’ha prodotta è stata osservata nel 2017 per la prima volta sia nelle onde gravitazionali che nelle onde elettromagnetiche, aprendo così l’era dell’astronomia multimessaggera.

«Le nostre simulazioni sono in stretto accordo con le osservazioni della kilonova At2017gfo», dice a questo proposito Luke J. Shingles, ricercatore al Gsi Helmholtz Centre for Heavy Ion Research e primo autore dello studio pubblicato ilmese scorso su The Astrophysical Juornal Letters. «Ciò indica che a grandi linee abbiamo compreso ciò che è avvenuto durante l’esplosione e nei momenti successivi».

La simulazione 3D combina insieme diverse aree della fisica, permettendo di studiare il comportamento della materia in condizioni di elevata densità, le proprietà dei nuclei di elementi pesanti instabili e le interazioni atomo-luce, aggiungono i ricercatori. I futuri progressi in quest’area di ricerca ci aiuteranno a comprendere l’origine degli elementi più pesanti del ferro (come il platino e l’oro) che sono prodotti durante queste fusioni principalmente attraverso un rapido processo di cattura dei neutroni.

 

Fonte: Media INAF

Articoli correlati

Informazioni

Astronomia Valli del Noce è un portale che vuole essere un punto di incontro e di informazione per l'attività astronomica che si svolge in Val di Non e Val di Sole (Trentino), ma non solo. Vuole anche essere un punto di partenza per tutti quegli astrofili alla ricerca di informazioni sul mondo dell'astronomia e per tutti quei neofiti che si avvicinano per la prima volta all'astronomia.

Privacy Policy

I cookies servono a migliorare i servizi che offriamo e a ottimizzare l'esperienza dell'utente. Proseguendo la navigazione, senza modificare le impostazioni del browser, accetti di ricevere tutti i cookies del portale web www.astronomiavallidelnoce.it. Se non desideri ricevere i cookies, modifica le impostazioni del tuo browser.

Privacy Policy

AVdN Foto del Giorno

Astronomy Picture of the Day