Le stelle di neutroni hanno una massa simile a quella del Sole. Ma il loro raggio è dell'ordine di 10 km, cioè 70.000 volte più piccolo del Sole. La loro massa è perciò impacchettata in un volume 70.0003 (circa 1014) volte più piccolo, e la densità media è quindi 1014 volte più alta. Questi valori di densità sono i più alti conosciuti, e sono impossibili da riprodurre in laboratorio: per dare un'idea delle condizioni estreme di una stella di neutroni, per riprodurre la densità osservata occorrerebbe comprimere una portaerei nello spazio occupato da un granello di sabbia. Si tratta di una densità simile a quella dei nuclei atomici, ma estesa per decine di chilometri. In effetti, le stelle di neutroni possono essere considerate nuclei atomici giganti, tenuti insieme dalla forza gravitazionale.
A causa dell'altissima densità e delle piccole dimensioni, una stella di neutroni possiede un campo gravitazionale superficiale cento miliardi (1011) di volte più intenso di quello della Terra. Una delle misure di un campo gravitazionale è la sua velocità di fuga, cioè la velocità che un oggetto deve avere per potergli sfuggire. Sulla superficie terrestre essa vale 11 km/s, mentre per una stella di neutroni si aggira intorno ai 100.000 km/s, cioè un terzo della velocità della luce.
Una tipica stella di neutroni ha un diametro di 20 chilometri, ha una massa minima di 1,4 volte quella del Sole (altrimenti sarebbe rimasta una nana bianca), e una massima di 3 volte quella del Sole (altrimenti collasserebbe in un buco nero). La loro rotazione è spesso molto rapida: la maggior parte delle stelle di neutroni ruota con periodi da 1 a 30 secondi, ma esistono alcune che arrivano a pochi millesimi di secondo.
La materia alla loro superficie è composta da nuclei ordinari ionizzati. Cominciando a scendere, si incontrano nuclei con quantità sempre più elevate di neutroni. Questi nuclei decadrebbero rapidamente in condizioni normali, ma sono tenuti stabili dall'enorme pressione. Ancora più in profondità, si trova una soglia sotto la quale i neutroni liberi si separano dai nuclei e hanno un'esistenza indipendente. In questa regione si trovano nuclei, elettroni liberi, e neutroni liberi. I nuclei diventano sempre di meno andando verso il centro, mentre la percentuale di neutroni aumenta. La natura esatta della materia superdensa che si trova al centro non è ancora ben compresa. Alcuni ricercatori si riferiscono ad essa come ad una sostanza teorica, il neutronio. Potrebbe essere una mistura superfluida di neutroni con tracce di protoni ed elettroni, potrebbero essere presenti particelle di alta energia come pioni e kaoni, e altri speculano di materia composta da quark subatomici. Finora le osservazioni non hanno né confermato né escluso questi stati "esotici" della materia. Tuttavia, esaminando le curve di raffreddamento di alcune stelle di neutroni conosciute, sembrerebbe confermata l'ipotesi di stati superfluidi (e anche superconduttivi), almeno in alcune zone degli strati interni di tali astri.
Le stelle di neutroni potrebbero essere una chiave per comprendere alcuni degli aspetti dell'universo che ancora ci sfuggono, come quelli relativi alle onde gravitazionali e ai meccanismi sottostanti ai giganteschi brillamenti che provengono a volte dalle magnetar, stelle di neutroni dotate di un campo magnetico particolarmente intenso.
Due ricercatori, Charles Horowitz, dell'Università dell'Indiana a Bloomington e Kai Kadau, del Los Alamos National Laboratory (LANL), hanno sviluppato un modello di dinamica molecolare per simulare il comportamento delle stelle a neutroni, alla cui superficie vi sarebbe una vera e propria “crosta” con tanto di protuberanze o “montagne”.
Grazie ai supercalcolatori del LANL, spiega Horowitz, “abbiamo modellizzato una piccola regione della crosta di una stella di neutroni seguendo il moto individuale di 12 milioni di particelle.” In particolare, la simulazione di Horowitz e Kadau mostra come la crosta della stella sia verosimilmente costituita da ioni: "è più o meno composta da atomi normali, ma ionizzati. La pressione della stella è così elevata da 'strizzare' gli elettroni e creare degli ioni; abbiamo quindi calcolato come la crosta si deforma e alla fine si rompe sotto l'estremo peso di una 'montagna' sulla stella di neutroni.”
La rottura della crosta sarebbe d'altra parte legata alla produzione dei brillamenti. Secondo il modello, le “montagne” che si formano su queste stelle in rapida rotazione e il loro crollo generano intense onde gravitazionali: “Se riuscissimo a comprendere meglio come ciò avviene, potremmo essere in grado di formulare previsioni migliori su quali stelle a neutroni produrranno probabilmente le onde gravitazionali più forti. Dando agli scienziati un buon posto da tenere sotto osservazione.”
“Nel 2004, è stato rilevato un brillamento gigante proveniente da una magnetar: si trattava di una quantità enorme di energia”, ha osservato Horowitz. “Un brillamento di questo tipo è possibile solo se nel momento in cui la crosta si spezza c'era un'energia enorme immagazzinata nella crosta e nel campo magnetico: identificare effettivamente queste onde rappresenterebbe una grandissima scoperta e una conferma della relatività generale, e il nostro modello può essere d'aiuto in questo senso.”